A Single-Crystal Study of Eight-Layer Barium Niobium Lithium Oxide, $\mathbf{B a}_{\mathbf{4}} \mathbf{N b}_{\mathbf{3}} \mathbf{L i O}_{12}$

EUGENE F. JENDREK, JR., ALAN D. POTOFF, and LEWIS KATZ
Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06268

Received July 3, 1973

Abstract

A single-crystal study of a sample of $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$ provided by Dr. T. Negas has been carried out and confirms the $|(4)|(4) \mid$ layer stacking scheme (Zhdanov notation) for the eight BaO_{3} layers per unit cell. Of the eight MO_{6} octahedra per cell ($\mathrm{M}=\mathrm{Nb}$ or Li), four share faces in pairs, and these pairs are linked by pairs of corner-sharing MO_{6} octahedra. The compound has an hexagonal cell of dimensions $a=5.777 \pm$ $0.006 \AA$ and $c=18.95 \pm 0.03 \AA$, probable space group $P 6_{3} / m m c, Z=2$. The theoretical density is 6.22 $\mathrm{g} / \mathrm{cm}^{3}$; within the limit of error of the pyenometrically measured density, $6.08 \pm 0.06 \mathrm{~g} / \mathrm{cm}^{3}$. The study was carried out with 620 independent reflections, of which 437 were considered observed, collected by automated counter methods and refined by least-squares to a conventional R value of 0.076 .

Introduction

A discussion of structure relations in mixed metal oxides which could be described in terms of close packed layers of composition AO_{3} has been given by Katz and Ward (1). Negas et al. (2), in their studies on the crystal chemistry of lithium in octahedrally coordinated structures, have prepared an $8 \mathrm{~L}(\mathrm{~L}=$ layer $)$ compound of composition $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$ and a 10 L compound containing tungsten. Crystals of both of these compounds were sent to us by Dr. Negas. In this paper we report the results of a single-crystal study of the 8 L compound.

Experimental

The crystal chosen for study was a thin, clear, almost colorless plate 0.025 mm thick, and roughly trapezoidal in shape (parallel sides 0.37 mm and 0.25 mm , hcight 0.25 mm). Precession photographs indicated the probable space group to be one of $P \overline{6} 2 c, P 6_{3} m c$, or $P 6_{3} / m m c$. The observed unit-cell parameters of $a=5.79$ \AA and $c=19.04 \AA$ were in agreement with those previously reported (2). The cell dimensions obtained by least-squares refinement using 12 well-centered reflections measured with a Picker automated diffractometer gave $a=5.777 \pm 0.006$
\AA and $c=18.95 \pm 0.03 \AA$. Full rotation photographs werc used to verify that the true cell parameters were not multiples of the values found.

All reflections for which $k \geqslant 0, h \geqslant k$, and $-32 \leqslant$ $l \leqslant 32,2 \theta \leqslant 75^{\circ}$ were measured with a Picker automated diffractometer with graphite monochromatized Mo radiation, pulse height discrimination, and a scintillation counter. The $\theta-2 \theta$ scan technique was used at $2^{\circ} 2 \theta / \mathrm{min}$. Background was counted for 20 sec at each end of the 2.67° scan range.

Over 2800 reflections were measured which resulted after averaging in 620 independent reflections of which 437 were greater than 2σ for the background and were considered observed. An absorption correction prior to averaging was made using Prewitt's program ACACA (3) by integration over a $10 \times 10 \times 10$ grid.

Statistical analysis of the reflection intensities indicated a centric distribution. Since the Laue group was $6 / \mathrm{mmm}$ and there were no systematic absences other than $h h l$ when $l=2 n+1$, the probable space group is $P 6_{3} / m m c$. (No violations of this absence rule were observed on the photographs, but a couple of counter-measured intensities just exceeded the 2σ threshhold adopted for observed reflections.)

TABLE I
Atomic Parameters for $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}{ }^{a}$ Space Groúp $\mathrm{P}_{3} / m m c$ (No. 194)

Atom	Position	x	y	z	$\mathrm{U}_{12}{ }^{b}$	$\mathrm{U}_{33}{ }^{b}$
$\mathrm{Ba}(1)$	$2 a$	0	0	0	$38(3)$	$93(8)$
$\mathrm{Ba}(2)$	$2 b$	$1 / 3$	$2 / 3$	$3 / 4$	$43(3)$	$79(8)$
$\mathrm{Ba}(3)$	$4 f$	$1 / 3$	$2 / 3$	$0.1350(1)$	$62(3)$	$132(7)$
$\mathrm{Nb}(2)$	$4 f$	$1 / 3$	$2 / 3$	$0.5638(1)$	$20(3)$	$37(8)$
			0		U	
$\mathrm{Nb}(1)^{c}$	$4 e$	0	0	$0.1905(3)$	$64(8)$	
$\mathrm{O}(1)$	$6 g$	$1 / 2$	$0.35(31)$			
$\mathrm{O}(2)$	$6 h$	$0.1594(35)$	0.3187	$1 / 4$	$253(48)$	
$\mathrm{O}(3)$	$12 k$	$0.8284(16)$	0.6568	$0.1188(6)$	$92(19)$	

${ }^{a}$ Thermal parameters have been multiplied by 10^{4}.
${ }^{b} \mathrm{U}_{11}=\mathrm{U}_{22}=2 \mathrm{U}_{12}$ and $\mathrm{U}_{13}=\mathrm{U}_{23}=0$.
${ }^{c} \mathrm{Nb}(1)$ has a population parameter of 0.52 . Its position is assumed to be randomly occupied by Nb and Li .

The c axial length, $18.95 \AA$, suggests an 8 L stacking sequence of BaO_{3} layers. Two 8 L stacking sequences are possible in space group $P 6_{3} / \mathrm{mmc}$. In the Zhdanov notation, these are |(4)|(4)|, which corresponds to 75% cubic layers (adjacent layers different) and 25% hexagonal layers (adjacent layers alike), and $|1(2) 1| 1(2) 1 \mid$,

Frg. 1. Structure of $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$. Ba atoms are shown as striped circles, O atoms as large open circles, Nb atoms as small blackened circles, and $\mathrm{Nb} / \mathrm{Li}$ sites as small open circles.
which corresponds to 75% hexagonal layers and 25% cubic layers. For $8 \mathrm{~L} \mathrm{BaMnO}_{3}$, the second arrangement was found (4,5). For $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$, however, the first arrangement was established from powder data by Negas et al. (2) and is confirmed in our study.

In order to test for the lithium positions, all the octahedral sites were assumed occupied by niobium, and the positional and occupancy factors were varied in a least-squares refinement with isotropic thermal parameters.
An occupancy factor of 52% was found for the niobium in the 4 -fold position corresponding to the face-sharing MO_{6} octahedra, i.e., $\mathrm{Nb}(1)$. This value indicates a random filling with Nb and Li and is what one might expect for the facesharing octahedra. All other occupancy factors remained close to unity. Convergence was obtained with unit weights at a conventional R of 7.6% in a refinement in which anisotropic thermal parameters were used for the barium atoms and $\mathrm{Nb}(2)$, and isotropic thermal parameters were used for the oxygen atoms and $\mathrm{Nb}(1)$. (Three reflections strongly affected by extinction were omitted.) A weighted refinement using a weighting scheme described in other studies (6) lowered the weighted R somewhat but did not change the conventional R or the atomic parameters significantly, and the results of the unit weight refinement are the ones reported.

Neutral atom form factors as well as the real and imaginary parts of the anomalous dispersion factors were taken from the International Tables (7). Calculations were carried out with

TABLE II
Interatomic Distances and Angles, $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$

	Distances $^{a}(\AA)$			
$6 \mathrm{Ba}(1)-\mathrm{O}(1)$	$2.888(2)$	$3 \mathrm{Nb}(2)-\mathrm{O}(1)$	$2.060(2)$	
$6 \mathrm{Ba}(1)-\mathrm{O}(3)$	$2.831(9)$	$3 \mathrm{Nb}(2)-\mathrm{O}(3)$	$1.924(6)$	
$6 \mathrm{Ba}(2)-\mathrm{O}(2)$	$2.889(20)$	$\mathrm{O}(1)-\mathrm{O}(1)$	$2.888(1)$	
$6 \mathrm{Ba}(2)-\mathrm{O}(3)$	$2.966(10)$	$\mathrm{O}(1)-\mathrm{O}(3)$	$2.787(10)$	
$3 \mathrm{Ba}(3)-\mathrm{O}(1)$	$3.053(3)$	$\mathrm{O}(2)-\mathrm{O}(2)$	$2.762(14)$	
$3 \mathrm{Ba}(3)-\mathrm{O}(2)$	$2.788(3)$	$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	$3.014(14)$	
$6 \mathrm{Ba}(3)-\mathrm{O}(3)$	$2.905(10)$	$\mathrm{O}(2)-\mathrm{O}(3)$	$2.988(15)$	
$3 \mathrm{Nb}(1)-\mathrm{O}(2)$	$1.952(3)$	$\mathrm{O}(3)-\mathrm{O}(3)$	$2.802(7)$	
$3 \mathrm{Nb}(1)-\mathrm{O}(3)$	$2.189(8)$	$\mathrm{Nb}(1)-\mathrm{Nb}(1)$	$2.254(8)$	

Angles (degrees)	
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}(2)$	$90.0(6)$
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}(3)$	$92.2(5)$
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}(3)$	$176.9(3)$
$\mathrm{O}(3)-\mathrm{Nb}(1)-\mathrm{O}(3)$	$85.6(4)$
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(1)$	$89.0(1)$
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(3)$	$88.7(3)$
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(3)$	$176.8(5)$
$\mathrm{O}(3)-\mathrm{Nb}(2)-\mathrm{O}(3)$	$93.5(4)$
$\mathrm{Nb}(2)-\mathrm{O}(1)-\mathrm{Nb}(2)$	$180(9)$
$\mathrm{Nb}(1)-\mathrm{O}(2)-\mathrm{Nb}(1)$	$70.5(2)$
$\mathrm{Nb}(1)-\mathrm{O}(3)-\mathrm{Nb}(2)$	$174.4(5)$

[^0]X-Ray System (8). Final position and thermal parameters are listed in Table I, bond distances and angles are given in Table II, and observed and calculated structure factors in Table III. An illustration of the unit-cell contents (Fig. 1) and an illustration of the small cation environment (Fig. 2) were prepared with Johnson's program ORTEP (9).

Discussion

The use of lithium to lower the average oxidation state of octahedrally coordinated cations in a variety of well-known structure types has been discussed in a paper by Negas et al. (2) who have described a number of the possible stoichiometries. A related use of lithium in reducing average oxidation states has been described in compounds $\mathrm{LiM}^{\mathrm{II}} \mathrm{Mo}_{3} \mathrm{O}_{8}$ (10, 11) which adopt structures related to that of $\mathrm{A}_{2}^{\mathrm{II}} \mathrm{Mo}_{3} \mathrm{O}_{8}$, where A^{II} may be any of a number of

Fig. 2. Portion of structure showing face-sharing octahedra linked to a corner-sharing octahedron.
divalent cations such as those of $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$, and Cd (12). (In these cases, the Li goes into tetrahedral sites.) The use of Li^{+}also promotes the possibility of face sharing of octahedra by removing the necessity for close approaches of highly charged cations. Thus, in the face-sharing pairs of octahedra in $\mathrm{Ba}_{4}-$ $\mathrm{Nb}_{3} \mathrm{LiO}_{12}$, half of the octahedra are occupied by Li^{+}and half by Nb^{5+}. To be sure, the random arrangement would allow for $\mathrm{Li}^{+}-\mathrm{Li}^{+}$and $\mathrm{Nb}^{5+}-\mathrm{Nb}^{5+}$ pairings, but it is more likely that $\mathrm{Li}^{+}-\mathrm{Nb}^{5+}$ pairings are the rule and that the randomness is achieved by random up-down orientations of the pairs. Also the $\mathrm{Nb}(1)-\mathrm{Nb}(1)$ distance is only $2.25 \AA$, which would be extremely short for a $\mathrm{Nb}-\mathrm{Nb}$ separation.

The possibility of an ordered arrangement of Li^{+}and Nb^{5+} in the face-sharing octahedra was tested by placing these ions in 2 -fold positions in space group $P 6_{3} m c$. When full occupancy of sites was assumed, convergence was not obtained in least-squares refinements since the temperature factor for Li always went strongly negative, and the program reset it to zero. Convergence was obtained when the population parameters for the Li and Nb in the face-sharing octahedra were allowed to vary and the temperature factors held fixed. These population

TABLE III
Observed and Calculated Structure Factors ${ }^{a}$

${ }^{a}$ The columns are $h, 10\left|F_{0}\right|, 10\left|F_{\mathrm{c}}\right|$. Unobserved reflections are marked by asterisks. Extinction-affected reflections not used in refinement are marked by E .
parameters converged to 6.6 and 0.6 for Li and Nb , respectively, which is again indicative of random occupancy. The values obtained for these population parameters are, of course, sensitive to the temperature factor values chosen, and nonconvergence problems could have been aggravated by pseudosymmetry.

However, the evidence favors the conclusion that there is a random arrangement of Li and Nb in the face-sharing octahedra.

With eight-layer BaMnO_{3} and eight-layer $\mathrm{Ba}_{4} \mathrm{Nb}_{3} \mathrm{LiO}_{12}$, two of the six possible eightlayer stacking sequences of close packed layers have been observed in complex metal oxides.

Acknowledgments

The authors are grateful to the National Science Foundation for financial assistance. We thank Dr. T. Negas of the National Bureau of Standards for providing samples of the crystals studied. Computations were carried out in the Computer Center of the University of Connecticut, which is supported in part by Grant GJ-9 of the National Science Foundation. Photographs of the figures and Table III were prepared by the University of Connecticut Photographic Laboratory.

References

I. L. Katz and R. Ward, Inorg. Chem. 3, 205 (1964).
2. T. Negas, R. S. Roth, H. S. Parker, and W. S. Brower, J. Solid State Chem. 8, 1 (1973).
3. C. T. Prewitt, "ACACA," E. I. du Pont de Nemours \& Co., Wilmington, DE (1965).
4. T. Negas and R. S. Roth, J. Solid State Chem. 3, 323 (1971).
5. A. D. Potoff, B. L. Chamberland, and L. Katz, J. Solid State Chem. 8, 234 (1973).
6. D. M. Evans and L. Katz, J. Solid State Chem. 6, 459 (1973).
7. "International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham (1962).
8. J. M. Stewart, F. A. Kundell, and J. C. Baldwin, Eds., "The X-Ray System," Computer Science Center, University of Maryland, College Park, MD (1970).
9. C. K. Johnson, "ORTEP," ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN (1965).
10. P. C. Donohue and L. Katz, Nature (London) 201, 180 (1964).
11. J. DeBenedittis and L. Katz, Inorg. Chem. 4, 1836 (1965).
12. W. H. McCarroll, L. Katz, and R. Ward, J. Amer. Chem. Soc. 79, 5410 (1957).

[^0]: ${ }^{a}$ Numbers preceding atom symbols indicate bond multiplicitics.

